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Abstract. I t  is shown that the low-temperature behaviour of a pure 2~ solid approaching 
plastic instability under a constant shear field can be modelled as a sort of continuous 
phase trunsition from a metastable equilibrium state to a time-dependent state of a flowing 
solid with vanishing shear modulus. With the difference that here the control parameter 
is the external shear strength and not the temperature, the mechanisms of the instability, 
in the high dislocation core energy regime, are the same invoked in the K m w  theory 
of 2D melting: the dissociation and proliferation of dislocation dipoles with vcnishing 
net Burgers vector. In this way, in two dimensions, some hidden similar statistical and 
structural properties of a melting solid and a plastically flowing one are put forward apart 
from the obvious analogies based on the common,fluid behaviour. With the caution that the 
theory does not treat critical fluctuations properly, all the relevant thermodynamic functions 
exhibit essential singularities approaching the critical point. However, the .excess specific 
heat is foreseen to be experimentally measurable within a stress range where fluctuations 
are negligible. 

1. Introduction 

The concepts of both order and thermodynamic stability of two-dimensional (2D) 
solids still remain partially open questions. In particular, 2D melting, in the absence 
of external fields, represents an intriguing problem in the modern theory of phase 
transitions. For a thorough critical analysis of the subject the reader is referred to the 
review paper [l]  and to the references therein. 

To clarify the theory of the peculiar low-temperature thermodynamic properties of 
a 2~ solid in an external shear field, it is worth summarising the main results of the 
KTHNY theory [2 ,  3 ,  41 of 2D melting, for some similar mechanisms (see below) are 
probably operative in both cases. Following KTHNY theory, melting of 2D solids on an 
amorphous substrate is a continuous phase transition mediated by both dissociation 
and multiplication of topological defects pairs (pairs of edge dislocations with equal 
and opposite Burgers vectors) leading, above the critical temperature, to an anisotropic 
liquid (the hexatic phase). The solid phase possesses quasi-long-range positional order 
and long-range orientational order (topological order [2]), while the liquid phase 
has short-range positional order and quasi-long-range orientational order. From the 
thermodynamic point of view the main difference between an elastically isotropic solid 
and a liquid is that the solid has a non-vanishing shear elastic constant. This last 
quantity is operationally conceivable as the inverse of the (linear) shear strain response 
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to an infinitesimal shear stress ‘around a reference stress’, divided by the stress itself. 
This concept can be applied to the case of interest here provided the ‘reference stress’ 
is finite and not zero. In this limited sense we see that both melting and the type 
of ‘cold microcreep’ treated in this paper lead, above some threshold, to ‘states’ with 
a vanishing shear elastic constant: while the ‘solid’ is flowing under the action of an 
external shear (easy glide) it can be considered as a sort of highly anisotropic ‘fluid’. 

With reference to the order of the melting transition, some experiments [ 5 ]  and 
Monte Carlo simulations [6] seem to confirm the above theoretical predictions when 
the core energy of dislocation pairs (the self-energy of a pair with minimal distance in 
the lattice) is high. Otherwise a more usual first-order transition via nucleation and 
growth of grain boundaries seems to be more likely [7]. There are also theories not 
resorting to the concept of topological defects at all [8]. 

In this paper we study the statistical mechanics of a quite different phenomenon: 
the low-temperature microplastic instability of a 2D solid subjected to a critical shear 
field. Although this is not a phase transition (there is not a new stable equilibrium 
state beyond the ‘critical point’) we found that the instability (of an initially metastable 
equilibrium state) is mediated by both the dissociation and production of ever more 
mobile dislocation pairs as functions of the external stress level. The number of 
pairs and several thermodynamic functions show a ‘critical behaviour’, characterised 
by essential singtrlarities in the very vicinity of the unstable point. Our approximate 
treatment of the phase approaching the instability cannot make one confident of the 
precise kind of divergency, but the qualitative statement that the instability starts and 
proceeds in a way similar to a continuous phase transition up to the ‘critical stress 
value’ seems to be generally true for the considered model Hamiltonian in the high core 
energy regime. Another similarity with the theory of melting is the renormalisation of 
the elastic shear modulus of the host solid due to the polarisability of dislocation pairs 
(reversible microplastic relaxation of shear stresses). The profound difference is that 
the renormalisation presented below is rather similar to a mean-field renormalisation 
and is not a recursive one based on scale invariance [3, 41. 

The main approximations adopted in the paper are an expansion in fugacity of 
the dislocation grand partition function and the neglecting of dislocation climb. While 
the second approximation is an extremely good one at low temperature, the first is 
by no means obvious, its limit of validity residing in an (assumed) high value for the 
dislocation pair core energy. Going beyond this expansion could only be done in a 
numeric way [ 2 ] .  

2. The grand partition function of a ZD system of interacting dislocations in an external 
shear field 

Our model system could describe both a 3D crystal containing infinite straight edge 
dislocations parallel to the z axis and a 2D solid lying, say, on the ( x , y )  plane, containing 
‘vector’ point defects (2D edge dislocations [l]). We allow dislocation motion as well 
as production [9] ,  so that the corresponding statistical problem will be tackled in the 
grand canonical ensemble. Yet, the assumption of low temperature is made in order to 
rule out complicated interactions between ordinary ‘scalar’ point defects (e.g. vacancies) 
and non-conservative motion of dislocations such as climb. The Hamiltonian for a 
dislocation pair with Burgers vector b = fb2,y, in an unstressed elastically isotropic 
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solid?, reads [2, lo]: 

H ,  = b2D In (k) - i b 2 D  cos(28) + 2E,  

8339 

where r represents the modulus of the vector distance Y between the two singularities 
and 8 the angle Y forms with the x axis (see figure l) ,  r ,  a short-range cut-off to avoid 
divergences; b is the modulus of a minimal Burgers vector of a dislocation (this last 
can lie along both x and y directions) in a square lattice of lattice parameter a = b, 
2E,  is the core energy and D is related to the bare shear modulus p and Poisson’s ratio 
v by 

When p stands for the ordinary 3D shear modulus [energy/volume], H ,  and E,  are 
specific to a unit length (along z )  of dislocation line. When instead p is the 2D shear 
modulus [energy/surface], H ,  and E,  are directly energies. We shall consider only 
those complexions for which a neutrality condition C , b ,  = 0 holds [4]. Within the 
fugacity expansion approximation used below this implies that no interactions between 
dislocations of non-parallel Burgers vectors are considered. We stress that inclusion 
of these higher-order effects would be very awkward due to the appearance of infinite 
self-energy terms in H ,  in the thermodynamic limit [3, 121. From the macroscopic 
point of wiew the neutrality condition corresponds to assuming that there is no plastic 
bending of the solid as a whole [ l  11. 

Glide Lane 

~ 

Figure 1. A dipole of edge dislocations of the x,family (see 52). If climb is prohibited, only 
the x components (glide) of internal forces are effective. 

Let us now consider the effect of a uniform external shear field (only the components 
o,, = oyL of the stress tensor are not vanishing). The corresponding conjigurational 
forces [ 121 acting on dislocations are given by the Peach-Koehler-Weertman formula 
[lo]. By integration we get, still for a dislocation pair with b = &be^,, an additional 
contribution to H, : 

H ,  = -bo,yr cos 8 (3) 

t This is the correct elastic Hamiltonian only if the underlying 2~ Bravais lattice is hexagonal [ l l ] :  in the 
case of the simple square lattice used here i t  is only a very frequent and good approximation. The same pair 
Hamiltonian has been used in the K T H N Y  theory of melting. 
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where we consider just glide in the x direction. Pairs with b = i-bi?) are treated 
similarly in an additive way, cross terms being absent in the considered approximation 
(see above and [4]). 

In the frame of linear elasticity H, + H, singular contributions for each dislocation 
pair of each family must be added to a non-singular [3] elastic Hamiltonian describing, 
in the long-wavelength limit, the uncoupled phonon excitations of the solid. This last 
Hamiltonian is written in terms of symmetrised elastic displacement gradients (the 
curl-free part [3, 9, 111 of the elastic strains) and possesses full elastic isotropy and 
continuous orientational symmetry. The unstressed 2D solid phase at low temperature 
is a much less symmetric phase (see above) in which topological order is compatible 
with an infinitesimal number of spontaneous dislocation pairs (disclination quadrupoles 
[3]) excitations described by H,. H, describes jeld-dricen polarisation of dislocation 
‘molecules’ and their subsequent dissociation, multiplication and mobilisation leading 
to destruction of topological order and time invariance (flowing plastic solid)?. 

Taking now as new variables the separation in the glide direction x = r cos 0 and 
the distance a between two parallel planes, we get the unidimensional Hamiltonian 

The normalised Hamiltonian H / D h 2  is plotted in figure 2 for increasing values of the 
normalised shear z = a, , /D. Study of the surface H = H ( x , a )  gave no evidence of 
minima with respect to a, which must be taken as just a parameter and not a dynamic 
coordinate from now on because we exclude climb motionst. 

The Hamiltonian (4) enters the expression of the grand partition function Q ,  we 
have expanded up to second order in fugacity f = exp(-PE,) [2, 131 

exp(-PH(x, a))dx + 0(f4) ( 5 )  

where A is the area of the system and from now on x is measured in units of b : x -+ x / b .  
The total grand partition function Q for both dislocation dipole families (see above) 
is Q = Q,Q, + O(f4) = Q’, + O(-f4). In this way Q is proportional to the sum of the 
probabilities of seeing either no dipoles or only one x-dipole or only one y-dipole at 
the same time. 

In (5) the original lattice sum has been replaced by an integral because we are 
interested in the long-wavelength properties of the system. 

In the thermodynamic limit [2] the above grand partition function Q is formally 
divergent, revealing an injinite plastic susceptibility with respect to an external shear. 
However, the relative minimum at finite x in H ( x ,  a) shown in figure 2 makes practically 
time-independent (metastable) states possible at low shears (see the next section). 

3. Metastable states and parabolic approximation 

As we see in figure 2, for z = 0 the dipole Hamiltonian has the typical form of a 
bistable potential, corresponding to a couple of equally probable complexions. These 

t The complete Hamiltonian (1) + (3) has already been considered in the KTHNY theory of ZD melting but 
only to compute the ‘polarisability’ of the gas of dipoles around zero stress. 
$ The surface H also showed a monotonic increase with respect to a, suggesting a = 6 as the most probable 
value at equilibrium. A later variational check showed the same increase in the grand canonical potential 0 
itself. 
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Dipole separation, x 

Figure 2. The complete Hamiltonian of a dislocation dipole. The activation energy A E ( r )  
is the energy difference between the right minimum and the maximum (see figure 3). The 
Hamiltonian coincides with potential energy because the effective mass of dislocations is 
negligible in equilibrium problems. Full curve, T = 0; dotted curve, T = 0.1; broken curve, 
T = 0.2; chain curve, T = 0.25. 

are two equivalent dipoles with 0 = n/4 and 8 = 3n/4 (figure 1). The introduction 
of an external shear breaks this symmetry and brings about major changes in the 
physics of the problem. First, the abrupt appearance of a 'third minimum of infinite 
depth at x = x' in H ( x )  turns the system from a stable into a metastable one. No 
matter how long it will take to get through the potential barrier, x = x will eventually 
be reached and the system will dissociate. The outcome is a time-dependent state 
featuring irreversible plastic flow. Strictly speaking, equilibrium statistical mechanics 
cannot correctly be used to study such a transition. Kinetics methods should be 
required (e.g. the solution of the Fokker-Planck equation for dislocation transport). 
In this paper we shall use the approximate alternative equilibrium approach known 
as 'parabolic approximation' [14]. A look at figure 2 serves to illustrate the spirit of 
the approximation. Increasing T the position X of the relative right minimum shifts 
towards larger x while the curvature of H(X) goes to zero. Such a change is seen to 
happen continuously and to wind up in a 'critical state'? for a computed value 5 = 0.25 
(inflection point in figure 2). Beyond this value no minima are shown any more: 
dislocations are free to move at any temperature. Here we consider the shear as the 
control parameter and the temperature just as a 'source' of fluctuations. 

Comparison between the activation energy (the height of the barrier AE ( 5 )  in 
figure 3) and the 'thermal energy' k,T = p-' becomes crucial for the parabolic 
approximation to be tenable: a tall barrier 'deceives' the system and makes it 'miss' 
the much more favourable accommodation for x = e. If this is the case, H ( x )  can be 
confused with its Taylor expansion up to second order around ,t(~). We have checked 
the condition A E  2 2k,T for room temperature A1 [15] and found it quite satisfied up 
to 80 YO of the critical shear. As in the case of a mean-field theory, critical fluctuations 

i The term 'critical' will always appear in quotes throughout this paper since we are not dealing with a 
continuous phase transition but with the sqft instability of a metastable state. 
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Figure 3. Activation energy A E ( T )  plotted against T compared with room temperature 
thermal energy. 

cannot be treated properly by the parabolic approximation (see below). Because it is 
not possible to write down exact practical analytical expressions for 2(’1), which is the 
root of the fourth-order algebraic equation 

x2 - a* 
(x2 + u2)2 = ‘I 

X 

we have solved (6) numerically with high precision and then fitted the numerical 
solution to the simple ‘critical’ relationship 

X ( Z )  = x, - (x, - a) - (y>” (7) 

where a = 1, x, = 2.414 213 and CI v 1/3. The analytic approximation (7) turns out to 
fit quite well the numerical solution for any z and especially near its critical value. We 
can now write the parabolic approximation for H as 

where H ( % )  and the second derivative of H at 3 are easily computable from (4) and 
(7). 

4. ‘Critical’ thermodynamic behaviour 

The grand canonical potential suitable for our problem is, for a given area of the 
system, a natural function of temperature, shear and core energy, and can be written 
as 

fl = F + 2E,(N) - 2Aa,,(€,x,) (9) 
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where F is the Helmholtz potential, ( N )  is the mean number of dislocation dipoles 
and (e,yy) is the mean dislocation shear strain conjugated to oxy and microscopically 
conceivable as: 

where (. . .) means the grand canonical average, N is the fluctuating number of dipoles 
and bx, is the fluctuating ‘dipole moment’ of each dislocation pair. -2E,  plays the 
formal role of a chemical potential for dislocation pairs. 

Using the grand canonical normalisation condition [13], we obtain the usual relation 
between Q and Q :  R = -k,T In Q which, in our case, reads 

(1 1) 

Evaluating the Gaussian integral in (1 1) we find 

IOgIT,/(Tc - T I ]  

Figure 4. The grand canonical potential plotted against shear. The logarithmic divergency 
is clearly visible. 

Figure 4 shows the logarithmic divergency of R as z + 0.25 It is now straightforward 
to compute all the relevant thermodynamic functions from the definition (9) of Q: 

(13) 
( e  ) =-- 1 (E)  

s = - ( % )  ( N )  = 1 (E )  X Y  2A do, 
T , G  T ,  Ec E,, U 

where S is the entropy. From (13) the heat capacity at constant shear C, and the 
inverse of the shear modulus pD of the dislocation subsystem can be derived by further 
differentiation : 
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We are now in a position to set an intriguing ‘duality’ between 2D melting (high 
temperature, no stress) and 2D plastic instability (low temperature, constant shear 
stress). At high shears dipole production gets thermodynamically favoured as well as 
larger dipoles moments. Both the proliferation and dissociation of dislocation dipoles 
induce divergency of all the above thermodynamic functions. Very near the ‘critical 
point’ all the above quantities display essential singularities which must be partly 
considered as artefacts of the parabolic approximation. 

L o g ( T , / I r , - r i )  

Figure 5. Essential singularity of specific heat. The bisectrix has been drawn to show that 
the slope of the log-log plot is not constant. This is true at any scale near the critical shear. 

Figure 5 shows the excess heat capacity divergency for 7: -+ 0.25. We notice that 
in the KTHNY theory of 2D melting also, the specific heat exhibits a (different) type of 
essential singularity as a function of temperature. 

Considering an area of 1 cm2, at T = 0.2, where the above approximation is 
still tenable, the excess heat capacity turned out to be approximately 1 9 %  of the 
corresponding quantity for the perfect solid computed from the 2D Dulong and Petit 
law (2k ,  per atom). 

From the data shown in figure 6 the behaviour of the renormalised shear modulus 
pR = p p D / ( p  + pD) can be obtzined, from which its vanishing for z -+ 0.25 is deduced 
although this is hardly seen with any finite numerical precision because pD (see figure 7) 
is much bigger than p except in the immediate neighbourhood of the critical shear. 
This means that the thermal warning signs of the instability should be more easily 
visible, and better represented by the present theory, than the mechanical ones. 

5. Conclusions 

The physics of melting and of plasticity of solids have always been recognised to have 
some similarities. From the macroscopic point of view the two phenomena share the 
commonyuid response to shear stresses albeit in the case of melting the probe shear 
is just a virtual one 131 and in the case of plasticity the fluidity is often far from being 
perfect. 
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Figure 6.  Dislocation strain response plotted against shear. Note the sharpness of the 
transition. 

bg(T c / ( T c  -T 1 )  
Figure 7. Dislocation shear modulus plotted against shear. The modulus vanishes at the 
critical stress r = 0.25. 

Dislocation theory offers a common microscopic mechanism for both cases but in 
3D systems the line nature of dislocations makes any rigorous attempt at a unified view 
hopeless [lo]. In two dimensions the topology is much simpler and dislocations are 
thermodynamic defecrs. Yet, the very peculiar nature of long-range order in 2D, firstly 
clarified by Kosterlitz and Thouless [2 ]  and later by Halperin and Nelson [3], makes 
the physics not trivial. 

In this preliminary paper we have shown the singular nature of the thermodynamic 
properties of a pure 2D solid on a smooth substrate under a constant shear. In 
particular, the excess specific heat exhibits a rather gradual and significant variation 
in a stress range where fluctuations are negligible. The envisaged mechanisms for the 
plastic instability are seen to be operating in the same way in the KTHNY theory of 2D 
melting: proliferation and dissociation of dislocation dipoles. 
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